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We show that the statistics of the charge transfer of noninteracting fermions through a two-lead contact is
generalized binomial at any temperature and for any form of the scattering matrix: an arbitrary charge-transfer
process can be decomposed into independent single-particle events. This result generalizes previous studies of
adiabatic pumping at zero temperature and of transport induced by bias voltage.
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I. INTRODUCTION

Noise is usually considered as an unwanted characteristic
of electronic circuits. Sometimes, however, studying elec-
tronic noise gives important information about physical sys-
tems. In particular, noise in small junctions is affected by the
fermionic statistics of electrons and is an essential part of
quantum mesoscopic transport �see, e.g., Ref. 1�. Even more
information about the quantum behavior of charge carriers is
encoded in the full probability distribution of the transferred
charge: a concept known as full-counting statistics.2

The full-counting statistics of electrons is most studied for
the simplest model of noninteracting fermions in various set-
ups. In this model, the general expression for the probability
distribution of the transferred charge is given by an elegant
determinant formula of Levitov and Lesovik.2–5 This formula
expresses the generating function for the probability distri-
bution as a certain functional determinant involving the
single-particle scattering matrix. An exact calculation of this
functional determinant may be performed in several special
setups of the charge transfer,2–7 and until recently most of the
results on the full-counting statistics in this model concen-
trated on studying such exactly solvable cases.

However in the recent years a progress has been made in
understanding general properties of charge transfer encoded
in the determinant formula. Namely, it has been shown that,
in the case of a contact with two external leads, the total
electronic transfer is given by a superposition of uncorrelated
elementary charge transfers of single electrons. In each of
such single-electron events, one electron has a certain prob-
ability p to pass through the contact �thereby transferring one
quantum of charge� and the probability 1− p to reflect �re-
sulting in no charge transfer�. This decomposition into el-
ementary charge-transfer events �dubbed “generalized bino-
mial” statistics8� has been shown under various assumptions:
at zero temperature for a charge transfer driven by a time-
dependent bias voltage,9 at zero temperature for the
adiabatic-pumping problem,10 and in the wave-packet for-
malism �a finite number of wave packets with a momentum-
dependent scattering�.8

The goal of the present paper is to lift the assumptions
made in those previous works and to show that the general-
ized binomial statistics is universally valid for any charge-
transfer problem involving noninteracting fermions: at any
temperature and for any time- and energy-dependent scat-

terer. A necessary condition remains that the initial state does
not involve any entanglement between the leads or between
different charge sectors in each lead.

It may be therefore practical to describe the statistics for
noninteracting fermions by the distribution ��p� of the effec-
tive transparencies of the elementary charge transfers instead
of the probabilities of the total transfer. To illustrate this con-
struction, we list several known examples where the distri-
bution ��p� is exactly known. Finally, to illustrate the impor-
tance of the noninteracting assumption, we also present
several examples of interacting systems where the full-
counting statistics is not generalized binomial. In those
cases, we may interpret the effect of interaction as a shift of
the transparencies p to the complex plane.

The paper is organized as follows. First, to fix the nota-
tion, we briefly review the derivation of the Levitov-Lesovik
determinant formula in Sec. II. In Sec. III we obtain our
main result: a decomposition of an arbitrary charge-transfer
process into independent tunneling events. In Secs. IV and V,
we illustrate our construction with several noninteracting and
interacting examples, respectively. Finally, we conclude with
Sec. VI, where we discuss possible generalizations and ap-
plications of our results. Some technical details are relegated
to Appendixes A and C.

II. GENERATING FUNCTION AND DETERMINANT
FORMULA

In this section we briefly review some known results from
the theory of full-counting statistics for noninteracting fermi-
ons �mainly following the method in Ref. 11�. We also intro-
duce the notation and specify the assumptions used in the
subsequent sections.

A. Generating function for full-counting statistics

A typical full-counting-statistics problem involves deter-
mining the probabilities of a given charge transfer through
the junction. In this paper, we will consider the case of a
junction with two leads, and therefore the definitions in this
section will be written for a two-lead junction even though
they admit a natural generalization to a many-lead
situation.12 In the case of two leads, the charge transfer is
characterized by one number q: an integer number of elec-
trons moved from the left to the right lead �or −q electrons
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from the right to the left lead�. The ingredients of the prob-
lem are as follows: �i� the initial density matrix of the system

�̂0 and �ii� the unitary evolution operator Û �over the time
when the measurement is performed�. To formally define the

transferred charge q, we also need �iii� an operator Q̂ which
counts the particles in one of the leads �say, the right lead�.

Then one easily sees that the probabilities of a given
charge transfer q can be found from the generating function

���� = Tr��̂0Û†ei�Q̂Ûe−i�Q̂�/Tr �̂0, �1�

where � is an auxiliary variable and the trace is taken in the
many-body Fock space �for technical reasons, it is conve-
nient to explicitly include the normalization of the density
matrix�. For a good definition of charge-transfer probabili-
ties, one needs to further assume that different charge sectors

are not entangled, i.e., that �̂0 commutes with Q̂. Under this
assumption one finds that thus defined ���� may indeed be
interpreted as a generating function,

���� = �
q=−�

�

Pqei�q, �2�

for some probabilities 0� Pq�1. The periodicity of ���� �or,
equivalently, the quantization of q� follows from the fact that

the spectrum of Q̂ is integer. It will therefore be convenient
for our purposes to treat ���� as a function of the complex
variable

u = ei�. �3�

Then Eq. �2� becomes the Laurent series of the complex
function ��u�. The Fourier components of ���� �the coeffi-
cients of the Laurent series� define the probabilities Pq, while
the derivatives at �=0 give the moments of the charge trans-
fer �qn�.

In the case of a periodic pumping, it may be useful to
define a “full-counting statistics per period”5 as the extensive
part of ����,

�0��� = exp� lim
Np→�

1

Np
ln ����� , �4�

where the full-counting statistics ���� is collected over Np
periods. Defined in this way, the characteristic function �0���
may be used for calculating extensive quantities �such as
cumulants of the transferred charge�, but the effects associ-
ated with the beginning and ending of the measurement2,4 are
neglected.

B. Determinant formula for noninteracting fermions

In the case of noninteracting fermions, general expression
�1� may be simplified and rewritten in terms of single-
particle operators: the so-called Levitov-Lesovik determi-
nant formula.2–5 In this section we briefly present its deriva-
tion following the approach in Ref. 11.

For noninteracting fermions, the multiparticle operators
�acting in the Fock space� are related to the corresponding
single-particle operators �acting in the Hilbert space of one

particle� with the help of the second-quantized formalism.
For notational convenience, we will use the “hatted” notation
�as in Eq. �1�	 for operators acting in the Fock space, while
the “unhatted” letters will denote the corresponding single-
particle operators. For quantum-mechanical observables
�such as the charge operator�, the correspondence is given by

Q̂=	†Q	 �where 	† and 	 are the fermionic creation and
annihilation operators, and the summation over single-
particle states is assumed�, while for their exponentials �such
as the evolution operator or the density matrix� the corre-

spondence is Û=exp�	†�ln U�		 �see Appendix A for de-
tails�.

Now we are ready to derive the Levitov-Lesovik determi-
nant formula, starting from Eq. �1� and making the following
assumptions:

�1� The operator Q̂ is a fermionic bilinear. This is obvi-
ously true for the operator of the charge in the right lead.
However, more generally, one can use the same formalism
for studying full-counting statistics for other physical quan-
tities �e.g., spin�.

�2� The evolution operator Û is an exponential of a fer-
mionic bilinear. This is equivalent to requiring that the
Hamiltonian is a fermionic bilinear �see Appendix A�, i.e.,
that the fermions are noninteracting.

�3� The density matrix �̂0 is an exponential of a fermionic

bilinear. �̂0=e−ĥ0, where ĥ0=	†h0	 is a Hermitian fermionic
bilinear �note that, if using Eq. �1�, we do not need to nor-
malize the density matrix	. Usually, one considers a thermal
equilibrium with h0 given by the physical Hamiltonian di-
vided by the temperature. However, our assumption is much
less restrictive. For example, one can take an initial state
with different temperatures of the leads and/or of different
channels or even prepare an equilibrium state using a differ-
ent Hamiltonian.

�4� The operators Q̂ and �̂0 commute. This condition ex-
presses the absence of charge entanglement in the initial state
and is a necessary condition for interpreting ���� as a gen-
erating function for charge-transfer probabilities.

The trace of the product of exponentials of fermionic bi-
linears in Eq. �1� can be rewritten as a determinant of an
operator acting in the single-particle Hilbert space �see Ref.
11 and Appendix A for details�,

���� = det�1 + nF�U†ei�QUe−i�Q − 1�	 . �5�

Here U is a single-particle evolution operator and

nF =
�0

�0 + 1
=

1

1 + eh0
�6�

is the occupation-number operator.

C. Regularization of the determinant

Depending on the dimensionality and on the asymptotic
behavior of the operators involved in Eq. �5�, the determinant
may require a regularization. If the dimension of the single-
particle Hilbert space is finite �this is the case in the wave-
packet formalism in Ref. 8�, all the matrices in Eq. �5� are
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finite dimensional and no regularization is needed.
If the single-particle Hilbert space has an infinite dimen-

sion, then a regularization may be needed or not, depending
on the properties of the Hamiltonians describing the evolu-
tion �in the operator Û� and the initial state �in the operator
�̂�. Usually, one considers a certain dispersion of the particle
in the leads �the same in the evolution and the initial-state
Hamiltonians�, with the fermions filling the states up to some
Fermi energy. Determinant �5� is well defined if the matrix
tends to unity sufficiently fast at both large positive and
negative energies. At large positive energies, nF tends to
zero, and the matrix under determinant tends to unity. At
large negative energies, the determinant is cut off either by
the Fermi energy or by the energy dependence of U: at very
low energy, the particle cannot penetrate through the barrier,
then U commutes with Q, and the matrix again tends to
unity. So determinant �5� is well defined if one uses exact
dispersion relation and the energy dependence of the scatter-
ing matrix.

The only �but historically very common in literature� case
when the determinant needs a regularization is the approxi-
mation where the spectrum is linearized �so that the Fermi
energy does not serve as a regularizing parameter� and the
scattering matrix is assumed to be energy independent
�“instant-scattering” or “adiabatic pumping” limit�.3,13,14 In
that case, the matrix in Eq. �5� is infinite dimensional and
tends to a nonunity matrix in the negative-energy asymptot-
ics; therefore the determinant needs to be regularized. The
regularization may be performed by admitting a weak energy
dependence of U, so that the determinant converges, and
then letting the corresponding energy scale tend to infinity.
Technically, this procedure amounts to simply re-expressing
the determinant in a manifestly convergent form where the
weak energy dependence of U becomes inessential. This ap-
proach was used in Ref. 14 and then more generally �but also
more formally� in Ref. 15. For completeness, we review the
details of adiabatic approximation in Appendix B.

Therefore, we assume, without loss of generality, that an
appropriate energy dependence is already included in the
evolution operator U, and determinant �5� does not need any
further regularization. Moreover, in the future discussion we
will be interested in the zeros of the determinant, which are
regularization independent.

III. DECOMPOSITION INTO SINGLE-PARTICLE EVENTS

A. Zeros of the generating function

To demonstrate that the full-counting statistics for nonin-
teracting fermions can be decomposed into elementary
single-particle transfer events, we first re-express determi-
nant �5� in terms of the spectral properties of a single opera-
tor, whose eigenvalues give transmission probabilities of
those elementary transfers.

This transformation proceeds as follows. Using the fact
that the charge operator Q is a projector �Q2=Q�, we rewrite
ei�Q=1+ �ei�−1�Q in Eq. �5� in order to obtain, after some
simple algebra,

���� = det��1 + �ei� − 1�X	e−i�Q� . �7�

Here we have introduced a new operator,

X = �1 − nF�Q + nFU†QU . �8�

One can see that the spectrum of the operator X is
�1� real and
�2� confined to the interval �0,1	.
Both properties become obvious if one considers a Her-

mitian operator conjugate to X by a similarity transformation,

X̃ = �nF�−1/2X�nF�1/2 = �1 − nF�Q + �nF�1/2U†QU�nF�1/2

�9�

�we have used our assumption �nF ,Q	=0; nF is Hermitian
and positive definite so that �nF�
1/2 is well defined16�.

The reality of the spectrum follows from the hermiticity

of X̃. The constraint on the eigenvalues follows from the

observation that both X̃ and 1− X̃ are represented as sums of
two positive operators �see Eq. �9� and the one obtained from
it by replacing Q→1−Q	.

The spectral properties of the operator X immediately im-
ply a constraint on the positions of zeros of the generating
function ���� analytically continued to the complex plane of
the variable u=ei�,

��u� = det��1 + �u − 1�X	u−Q� . �10�

The zeros of ��u� can be 0, � �from the factor u−Q�, or
coincide with 1−Xn

−1, where Xn are the eigenvalues of the
operator X. From the spectral properties of X, it then follows
that zeros of ��u� are confined to the negative real axis of the
complex u plane. This conclusion has been previously
reached in Ref. 10 under the assumptions of zero temperature
and instant scattering. Generalizing it to arbitrary tempera-
tures and to arbitrary evolution operators �under the assump-
tions formulated in Sec. II� constitutes the main result of our
present paper.

B. Generalized binomial statistics and effective transparencies

Expression �10� may be further interpreted in terms of
decomposing the charge transfer into a superposition of in-
dependent tunneling events, with the eigenvalues of X giving
the probabilities of those tunneling processes. To make this
interpretation more explicit, we get rid of the last factor
exp�−i�Q	 in Eq. �10� by17

���� = det��1 + �e−i� − 1�X	e−i�Xei�Xe−i�Q�

= ei� tr�X−Q� det��1 + �ei� − 1�X	e−i�X�

= ei��q�

n

e−i�Xn�1 + �ei� − 1�Xn	 , �11�

where in the last line the product is taken over the eigenval-
ues of the operator X, and

�q� = − i�� ln ������=0 = tr�X − Q� = tr�nF�U†QU − Q�	
�12�

is the average total transferred charge.15

Each factor �1+ �ei�−1�Xn	 in Eq. �11� corresponds to an
elementary single-electron event with the transmission prob-
ability Xn and reflection probability 1−Xn. The other expo-
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nential factors in Eq. �11� correspond to a deterministic
“background” charge transfer, which does not produce any
noise.

Such a statistics given by a superposition of individual
transmission events with different transparencies was dubbed
generalized binomial statistics in Ref. 8. Note that the effec-
tive transparencies are given by the spectrum of the effective-
transparency operator X and depend in a complicated way
on the time dynamics of the junction and on the initial ther-
modynamic state.18

C. Spectrum of the effective-transparency operator

Using the result derived above, we may now describe the
full-counting statistics of noninteracting fermions by the dis-
tribution of effective transparencies �the density of eigenval-
ues of the operator X� instead of the probabilities Pq. Follow-
ing Ref. 19, we define the effective-transparency density as

��p� = tr ��p − X� . �13�

Since the spectrum of X defines the density of zeros of ��u�
on the negative real semiaxis of u plane, the density of states
��p� may be related to the jump of the derivative of ���� at
the corresponding point. A simple calculation gives19

��p� = �− 1

2�p�1 − p�
�� ln �����

u−i0

u+i0

=
1

�
Im �p ln ��p − i0� , �14�

where

p =
1

1 − ei� =
1

1 − u
. �15�

Conversely, knowing the spectral density ��p�, one can
reconstruct the cumulant generating function ln ���� �up to
an overall deterministic charge transfer� by using Eq. �7�,

ln ���� = − i� Tr Q + 
0

1

dp��p�ln�1 + �ei� − 1�p	 .

�16�

As for the structure of the spectrum of effective transpar-
encies, there are two alternatives: the spectrum may be either
discrete or continuous. An analysis of available examples
gives the following possibilities:

�1� In a finite-dimensional problem �e.g., a finite number
of incident wave packets8�, the matrix is finite dimensional,
and the spectrum of effective transparencies is obviously fi-
nite and discrete.

�2� At zero temperature, in the instant-scattering approxi-
mation, for a continuous and periodic time dependence of the
scattering matrix,10 the spectrum is discrete, with possible
accumulation points at p=0 and p=1.

�3� At zero temperature, in the instant-scattering approxi-
mation, for a discontinuous time dependence of the scatter-
ing matrix, the spectrum typically becomes continuous.19

�4� From the above two examples, one can deduce that at
zero temperature, in the instant-scattering approximation, for

a continuous nonperiodic time dependence �a finite-time
pumping pulse�, the spectrum is discrete if the scattering
matrix returns to its initial value and continuous otherwise.
This can be shown by a linear fractional mapping of the time
axis on a circle,5 thus reducing the nonperiodic problem to a
periodic one, with either continuous or discontinuous time
dependence of the scattering matrix.

�5� For finite temperatures or energy-dependent scattering,
the spectrum of X is typically continuous. This can be seen in
the examples presented in Sec. IV. The physical reason for a
continuous spectrum is that particles incident at different en-
ergies have different effective transparencies, and thus inte-
gration over energies smears the spectrum.

If the spectrum ��p� is continuous, the singularities form
a branch cut of the function ��u� along the negative real axis
�or along a part of it�. At this branch cut, the function ��u� is
discontinuous, with the jump obeying Eq. �14�. A more de-
tailed analysis of the spectrum of the effective transparencies
will be presented in a subsequent publication.20

Note that in the case of zero temperature and adiabatic
pumping, the spectrum of effective transparencies may alter-
natively be found from a different operator labeled nF

z in Ref.
10 and M in Ref. 19. It is worth emphasizing that although
the two operators are different, at zero temperature and in the
instant-scattering approximation their spectra coincide, as
shown in Appendix C.

IV. EXAMPLES: NONINTERACTING FERMIONS

In this section, we illustrate our discussion with several
known examples.

A. T=0: Optimal (Lorentzian) pulses

An instructive example where the full-counting statistics
is exactly computable is the case of several Lorentzian volt-
age pulses of one-quantum intensity each: �V�t�dt= 
2�.
In this case, as shown in Ref. 5, the full-counting statistics
involves only a finite number of transferred electrons. For
the effective-transparency spectrum, this implies a finite dis-
crete spectrum with the number of levels equal to the number
of pulses.5,21 In the special case when all pulses are of the
same polarity �this also includes the setup of a constant
voltage2 as a limiting case�, all the effective transparencies
are degenerate and equal to the transparency of the junction
g,

��p� = W��p − g� , �17�

where W= �2��−1�V�t�dt is the number of pulses.

B. T=0: Periodic opening of a quantum point contact

An interesting exactly solvable example with a continu-
ous spectrum of effective transparencies has been considered
in Ref. 19: a periodic train of openings and closings of the
contact. In this case, the distribution of effective transparen-
cies is �Fig. 1�
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��p� =
G

�2

�g

p�1 − p�
Re

�1 – 2p�
��1 – 2p�2 − �1 − g�

, �18�

where the overall intensity �per opening/closing cycle, as in
Eq. �4�	 is

G = 2 ln
sin �w

�w0
. �19�

Here w is the fraction of a period during which the contact is
open �with the transparency g� and w0 is a regularization
given, essentially, by the fraction of a period taken by the
switching time.

One can see that if the contact is not fully open �g�1�,
then there is a spectral gap around ��p�=1 /2. We will com-
ment on this feature in a future publication.20

C. TÅ0: Zero bias voltage

Remarkably, the same formula �Eq. �18�	 gives the distri-
bution of effective transparencies in the case of a finite tem-
perature T �and zero bias voltage�.4,19 The overall intensity is
then given by

G =
�tT


, �20�

and the observation time t is assumed to be much longer than
 /T, so that only the extensive part �Eq. �4�	 is retained.

V. EXAMPLES: INTERACTING FERMIONS

The derivation of Sec. III shows that the absence of inter-
actions between fermions leads to a generalized binomial
statistics of the charge transfer between two conductors. In
this section, we show that if the fermions interact, the zeros
of the generating function ��u� may shift to the complex
plane.

Before presenting examples of full-counting statistics for
interacting fermions, let us use a two-particle example to
gain some intuition about the positions of the roots of ��u�.
Consider a system of two particles which propagate from the
left to the right lead of the contact. The full-counting statis-
tics is then given by a quadratic polynomial ��u�= P0+ P1u
+ P2u2 with the probabilities P0,1,2 obeying P0+ P1+ P2=1.
The roots of the polynomial become nonreal if

P1
2 � 4P0P2 or, equivalently, �P0 + �P2 � 1, �21�

i.e., if the probability P1 of separating the two particles be-
comes too small. If one considers a strong attraction between
particles, so that they become inseparable, then P1=0, and
the roots of ��u� become purely imaginary. One thus sees
that in this example �i� the nonreality of roots may be loosely
related to an attraction between particles and �ii� a certain
threshold of interaction may be needed to shift the roots of
��u� from the real axis. We now turn to several more com-
plicated examples of interacting systems where the full-
counting statistics may be exactly computed.

A. Charge transfer in a normal metal–superconductor point
contact

A more general example of an electronic system with at-
traction leading to charge transfer quantized in pairs of elec-
trons �and hence to a shift of the zeros of ��u� from the real
axis	 is considered in Ref. 22: a contact between a normal
metal and a superconductor. In the low-temperature limit and
at low bias voltage V �so that T�eV���, single-particle
tunneling is suppressed, and the full-counting statistics is
given by

��u� = �1 − gA + gAu2�W. �22�

Here gA is the probability of Andreev reflection and W
=eVt / �2�� is the effective number of transfer attempts dur-
ing the observation time t. Similarly to our two-particle ex-
ample above, the zeros of ��u� are in this case purely imagi-
nary.

B. Two particles scattering on a resonant quantum dot

Another example of an interacting two-particle scattering
problem has been studied in Ref. 23. In that work, one con-
siders a quantum dot characterized by its resonances and by
a Coulomb interaction between the particles. In this model,
the scattering matrix is exactly computed and then used to
find the full-counting statistics in a two-particle example. For
the example considered in that work �a singlet two-particle
wave packet in the shape of an exponentially truncated plane
wave�, the probabilities to transfer one and two electrons are
given by �we refer the reader to Ref. 23 for details of the
model and the derivation�

P1 =
2�

�1 + 3���1 + ��2�2 + 3� −
1

�2 + 1
� ,

P2 =
1

�1 + 3���1 + ��2�1 +
s��4�2 + 3�3 + ��	

2�1 + ����2 + 1���2 + s2�� ,

�23�

where � is the dimensionless dwelling time on the dot char-
acterizing the resonance, � characterizes the strength of the
Coulomb interaction �it is related to the parameter � intro-
duced in Ref. 23 as �=�� / �1+��	, and s= �3+�� / �2�1
+��	.

Using criterion �21�, we can find the range of parameters
� and � where the statistics is generalized binomial �see Fig.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

p

Μ

FIG. 1. �Color online� Effective-transparency distribution �18�
for g=1 �blue dashed line� and g=0.96 �red solid line�, plotted in
the units of 4G /�2. For g=0.96, there is a spectral gap between
p=0.4 and p=0.6.
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2�. Depending on the dwelling time, an interaction may ei-
ther shift the roots of ���� from the real axis or not.

Although this is a two-particle example, a qualitatively
similar behavior of roots can also be found in multiparticle
systems. For example, in Refs. 24 and 25, full-counting sta-
tistics has been calculated for charge and spin transport
through a Kondo dot. In that problem, one can have both
regimes with roots real and complex, depending on the pa-
rameters.

C. Charge pumping through a single-electron transistor

An interesting example with interaction where the statis-
tics is nevertheless generalized binomial is studied in Ref.
26. The authors of that work consider a charge pump based
on a nearly open quantum dot in the Coulomb blockade re-
gime. In spite of the interaction on the dot, the problem is
mapped onto an effective quadratic fermionic Hamiltonian
�including a Majorana fermion representing the resonant
level at the dot�. Therefore, our formal conclusion about the
generalized binomial statistics remains valid for this interact-
ing system as well.

Indeed, one can easily verify that the generating function
�per period� found in Ref. 26,

ln ���� = − i� +
1

2�
 d�

�ln�1 −
�2

�2 + �2�n−�1 − n+�
p

+
n+�1 − n−�

1 − p
�� ,

�24�

contains only real roots p �at any temperature�. Here � is the
pumping frequency, n
���= �e��
��/T+1�−1 are the Fermi oc-
cupation numbers at the temperature T, � is an energy scale
characterizing the strength of the Coulomb interaction in the
dot, and p= �1−ei��−1, as usual.

In the zero-temperature limit, the effective-transparency
distribution ��p� can be easily calculated analytically,

��p� = �
�

2�
p−1/2�1 − p�−3/2 for p �

���2

���2 + �2

0 for p �
���2

���2 + �2 .�
�25�

The spectrum is continuous with a gap at ���2

���2+�2 � p�1, as
shown in Fig. 3 �one can check that the gap survives at finite

temperatures but changes its magnitude and shifts toward the
center of the interval�.

VI. CONCLUSION

To summarize, we have shown that the charge-transfer
statistics for a system of noninteracting fermions is general-
ized binomial: it factorizes into individual single-particle
tunneling events. This property holds under very general
conditions: at arbitrary temperature and for an arbitrary time-
and energy-dependent scatterer. Note that the converse is not
true: an interacting system may either obey or disobey this
factorization property, as we have seen in examples.

The factorization property may be formulated in terms of
the positions of zeros of the generating function ��u� �or,
equivalently, of the singularities of ln ��u�	. The factoriza-
tion implies that those singularities are confined to the nega-
tive real axis. In this case one can fully characterize full-
counting statistics by the distribution of effective
transparencies ��p�. All charge-transfer properties �moments
and cumulants of the transferred charge, entanglement be-
tween the leads,19 etc.� can be expressed in terms of ��p�.

The absence of factorization corresponds to a shift of sin-
gularities from the real axis. In this case, ��u� can still be
characterized by its zeros albeit in the complex u plane. This
description is somewhat similar to the approach of Lee and
Yang27 in statistical physics, where a partition function is
characterized by the zeros of its analytic extension to com-
plex values of physical parameters such as magnetic field or
chemical potential. In statistical physics, this approach
turned out to be very useful for understanding possible phase
transitions: a phase transition is determined by the location
of zeros of the partition function relative to the real �physi-
cal� axis of parameters.27 From this perspective, there remain
interesting questions of characterizing interactions in the
scattering problem by the positions of singularities of ln ��u�
and of understanding possible physical implications of their
shift away from the real axis.

As an interesting extension of our results, one can con-
sider constraints on full-counting statistics for noninteracting
electrons in a multiterminal setup. In this case, a certain “re-
ality condition” on the zeros of the generating function is
possible.28 However, the factorization property does not
hold, being specific to the two-terminal case.

Another possible generalization of our construction is to
use the formalism developed in Secs. II and III for other

0 1 2 3 4
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0.4

0.6

0.8
Β

∆

generalized binomial statistics

complex roots

FIG. 2. �Color online� The shaded area shows the region in the
parameter space of � and �, where the roots of ��u� are complex
and the statistics is not generalized binomial.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

p

�Ω
�
Μ�p�

FIG. 3. �Color online� The effective-transparency distribution
�25� in the units of � /� �thick red line�. ��p� vanishes abruptly at
p= ���2 / ����2+�2	 �shown for �=��.
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types of problems with quadratic Hamiltonians, not necessar-
ily involving physical charge transfer. As an example of such
an application, one can study the statistics of staggered mag-
netization of an XY spin chain �mappable to free fermions by
a Jordan-Wigner transformation�. See also Ref. 29 for appli-
cations of those ideas to analyzing the entropy in such sys-
tems.
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APPENDIX A: FERMIONIC BILINEARS AND TRACE
IDENTITIES

For reader’s convenience, we present in this appendix
some helpful identities on the exponentials of fermionic bi-
linears. Those identities are then used to derive the determi-
nant formula �Eq. �5�	. A more detailed account including
proofs may be found in Ref. 11.

For any single-particle observable A, the corresponding
multiparticle operator acting in the Fock space is given by
the fermionic bilinear,

Â = 	†A	 . �A1�

This construction provides a representation of the gl�n� alge-
bra in the 2n-dimensional Fock space �n denotes here the
dimension of the single-particle Hilbert space�. Indeed, one
easily checks that commutators of fermionic bilinears are
given by

�Â,B̂	 = �A,B	̂ . �A2�

Exponentiating these relations, one obtains a representation
of the group GL�n�,30

eÂeB̂ = eĈ if eAeB = eC. �A3�

One can use this representation to show that the evolution
operator for a system of noninteracting fermions is an expo-
nential of a fermionic bilinear. Indeed, the multiparticle evo-
lution operator is given by the time-ordered exponential

Û = T exp�− i Ĥ�t�dt� , �A4�

where the time-dependent Hamiltonian Ĥ is a fermionic bi-
linear. This time-ordered exponential can be represented as a
chronologically ordered product of �infinitesimal� exponents
of fermionic bilinears and, by virtue of Eq. �A3�, may be
rewritten as a single exponential

Û = exp�	†�ln U�		 , �A5�

where

U = T exp�− i H�t�dt� �A6�

is the single-particle evolution operator.
For traces of such exponentials one has a simple

formula,11

Tr eÂ = det�1 + eA� , �A7�

where the trace is taken in the Fock space, and the determi-
nant is in the single-particle space. For traces of products of
exponentials of fermionic bilinears, one finds, using Eqs.
�A3� and �A7�,

Tr�eÂ1eÂ2 . . . eÂk� = det�1 + eA1eA2 . . . eAk� . �A8�

From this relation, a derivation of the Levitov-Lesovik de-
terminant formula easily follows

Tr��̂0Û†ei�Q̂Ûe−i�Q̂�
Tr �̂0

=
det�1 + e−h0U†ei�QUe−i�Q�

det�1 + e−h0�

= det�1 + nF�U†ei�QUe−i�Q − 1�	 ,

�A9�

where nF is defined by Eq. �6�.

APPENDIX B: ADIABATIC AND INSTANT-SCATTERING
APPROXIMATIONS

Determinant formula �5� has been derived under the very
general assumptions specified in Sec. II. A physically rel-
evant and technically simpler approximation is possible in
the situation when the two leads involve asymptotically free
electrons, so that the scattering may be described in terms of
an instantaneous scattering matrix S�t ,��. This matrix relates
the asymptotic states for electrons at energy � scattering on
the instantaneous Hamiltonian H�t�. If the Hamiltonian var-
ies slowly on the scale of the “scattering time” � log S /��,
then the evolution operator U may be approximated by the
Wigner transformation of S�t ,��.14 The corresponding adia-
baticity condition may be formulated as

� �S−1

�t

�S

��
� � 1. �B1�

At zero temperature, this condition allows to neglect the en-
ergy dependence of S�t ,�� and to replace the scattering op-
erator U in Eq. �5� by the instantaneous scattering matrix S�t�
taken at the Fermi energy � �since only the states in the
vicinity of the Fermi energy contribute to the
determinant�.3,5,14

At finite temperature, to neglect the energy dependence of
the scattering matrix, one also needs that the energy depen-
dence of S is small on the scale determined by the tempera-
ture. In addition to adiabaticity condition �B1� we require

T�S−1�S

��
� � 1. �B2�

The two conditions �Eqs. �B1� and �B2�	 constitute the
instant-scattering approximation �equivalent to the adiabatic
approximation in the case of zero temperature�. In this ap-
proximation, the determinant formula becomes
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���� = det�1 + nF�S†ei�QSe−i�Q − 1�� , �B3�

where S�t� is a local in time unitary scattering matrix.
Determinant �B3�, in turn, requires a regularization at

negative energies since the operator under the determinant
tends at infinite negative energies to S†ei�QSe−i�Q, a nonunity
matrix. This regularization may be performed either by tak-
ing into account the finiteness of the negative-energy spec-
trum or by reintroducing a weak energy dependence of
S�t ,�� so that lim�→−� S�t ,��=1. In the latter case, the easiest
way to implement the regularization is to rewrite Eq. �5� as15

���� = det��1 + nF�U†ei�QUe−i�Q − 1�	ei�nFQU†e−i�nFQU� .

�B4�

This manipulation is obviously admissible for the “full” evo-
lution operator U corresponding to the regularized scattering
matrix with lim�→−� S�t ,��=1. However, in new expression
�B4�, one can simply replace U by a local in time scattering
matrix S�t� to obtain a fully convergent expression in the
instant-scattering limit.

Regularized formula �B4� proposed in Ref. 15 is equiva-
lent to the previously existing regularization prescriptions.
Our discussion in this paper does not rely on this regulariza-
tion since we always consider the general case of an arbitrary
noninteracting evolution operator and therefore may assume
that the negative-energy asymptotics is suitably regularized.

APPENDIX C: SPECTRUM OF THE EFFECTIVE
TRANSPARENCIES IN THE ADIABATIC LIMIT AT ZERO

TEMPERATURE

Generalized binomial statistics for noninteracting fermi-
ons has already been proven in our earlier publication under

the assumption of zero temperature and instant scattering.10

Of course, that result now follows from the more general
argument of the present work. However, we find it instruc-
tive to demonstrate explicitly the equivalence of the two re-
sults under those more restrictive assumptions.

It has been shown in Ref. 10 that, at zero temperature and
in the instant-scattering limit, the effective transparencies of
elementary single-particle events are given by the spectrum
of the operator

nF
z = QSnFS†Q �C1�

�the same operator was denoted M in Ref. 19�. In this appen-
dix, we explicitly show that the spectra of nF

z and of X coin-
cide, except for the eigenvalues zero and one.

Indeed, at zero temperature nF is a projector operator, and

therefore the “hermitized” operator X̃ given by Eq. �9�,
whose spectrum coincides with the spectrum of X, is block
diagonal. The block at positive energies equals Q and only
gives eigenvalues zero and one. The block at negative ener-
gies can be written �at zero temperature� as

X̃− = nFS†QSnF = R†R, where R = QSnF �C2�

�we have also used that Q is a projector�. On the other hand,
one can rewrite �C1� as

nF
z = RR† �C3�

from where it becomes obvious that the spectra of X̃− and nF
z

coincide, except for zero eigenvalues �their eigenvectors can
be related to each other by the operators R and R†�. This
completes the proof of the coincidence of the spectra of X
and nF

z �modulo eigenvalues zero and one, which do not con-
tribute to the noise, but only to the overall deterministic
charge transfer�.
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